Histogram Spectra for Multivariate Time-Varying Volume LOD Selection

Steven Martin*
The Ohio State University

ABSTRACT

Level of detail techniques are widely applied to minimize sam-
pling error subject to working set size constraints. Typical large
data sets being produced today have many variables sampled across
time-varying volumes. Visualization of these multivariate volumes
is commonly phrased in terms of conditional expressions such as
”show variable A where variable B is between B; and B;.” The
bounds, B; and B,, tend to be specified during the interactive por-
tion of the workflow. Thus, to maximize quality over the salient
interval, level of detail selection should also be interactive. We in-
troduce the concept of histogram spectra to quickly and compactly
quantify the statistical sensitivity of volumes to sampling. Salient
interval volumes of one or more variables are used to select which
parts of the histogram spectra are important. The level of detail se-
lection problem, over a time-varying, multivariate, multiresolution
volume, is then posed as an integer programming problem using
the histogram spectra. We propose an efficient solution enabling
interactive LOD selection on large, out-of-core volumes and show
its efficacy on two real data sets from different problem domains.

Keywords: Level of detail selection, Multivariate volume visual-
ization, Time-varying volume visualization.

Index Terms: Computer Graphics [1.3.6]: Graphics data struc-
tures and data types—Level of detail selection, Multivariate volume
visualization, Time-varying volume visualization

1 INTRODUCTION

Large, time-varying, multivariate volumes are commonly encoun-
tered in scientific visualization. As the available compute power
for simulation has increased, the quantity of data produced has in-
creased commensurately. However, storage system throughput and
latency have not improved at the same rate. Analysis tools such
as volume renderers that seek to enable interactive visual analysis
must scale to support interactivity on these larger data sets.

The ability to interactively rotate, translate, and focus in on time-
varying volume simulation data can increase the understanding of
the data. If the data is too large to fit into memory at its highest
resolution, techniques must be applied to choose the subset, or level
of detail, of the data that maximizes quality subject to the working
set size constraints as determined by hardware resource availability.

All subsets of the value domain of the data are not necessarily
of the same importance, and it is often possible for users to make
informed guesses at what subsets are important. However, these
informed guesses often need to be part of the interactive workflow.
This means that level of detail selection must be done interactively.

For example, in the context of a weather simulation, the scientist
may be interested in the vertical velocity of clouds. It is clear that, if
we have a wind field defined over the entire volume and the clouds
do not cover the entire volume, only a portion of the wind field
is important. Similarly, a large portion of the volume variable that
determines cloud density will also be unimportant where it is below

*e-mail:martinst @cse.ohio-state.edu
Te-mail:hwshen @cse.ohio-state.edu

Han-Wei Shent
The Ohio State University

the threshold for clouds. Thus, we can refine the level of detail
selection based on intervals of interest, for both the cloud variable
and the velocity variable, to maximize information density within
the data loaded. By focusing only on the quality of a limited interval
volume of the volume, we can attain higher quality than if levels of
detail were selected in an interval-agnostic manner.

The best level of detail for a multiresolution data set is the one
that minimizes the error over the intervals of interest subject to a
size constraint. This introduces two challenges:

e Selection of the level of detail: General binary integer pro-
gramming, which can be used for LOD selection, is NP-hard.
We need to offer a more efficient alternative.

e Error estimation for intervals of interest: For level of detail
selection, given intervals of interest, it is necessary to esti-
mate the error introduced by downsampling. If no metadata is
stored, the entire data set must be loaded every time the error
is to be estimated for a new interval of interest. We need to
generate metadata to facilitate faster error estimation.

This work provides two core contributions, one addressing each
of these challenges. First, we introduce the novel concept of his-
togram spectra, which are used to estimate the statistical sensitivity
of time-varying volumes to sampling. Histogram spectra are stored
as metadata, enabling the estimation of error without having to ac-
cess the volume data directly. Secondly, we introduce an efficient
level of detail selection algorithm utilizing the linear relationship
between histogram spectra predicted error and RMS error. Our
technique enables fast, interactive LOD selection with reasonable
preprocessing times and low implementation complexity.

This paper is organized as follows. §2 discusses previous work
as related to our work. §3.1 through §3.4 introduce the concept
of histogram spectra. Our solutions to the level of detail selection
problem are discussed in §3.5 and §3.6. Considerations for applying
the algorithm to multivariate data are discussed in §3.7. Finally, the
results are examined in §4.

2 RELATED WORK

The challenge of interactively visualizing large data, both in scien-
tific visualization and in general graphics, has inspired much previ-
ous work. Common to many of the methods is the concept of mul-
tiresolution data availability. Two critical aspects in dealing with
multiresolution data are designing a multiresolution representation,
and deciding which portions of the multiresolution data to load in
an application.

Many approaches to multiresolution volume representation have
been explored. Wavelets are a widely used method, offering multi-
ple levels of detail with little or no space overhead. Westermann, et
al. [18] developed a method for directly rendering wavelet trans-
formed volume data. Wang, et al. [17] propose a method for
rendering very large wavelet-transformed volume data and subse-
quently extended [16] the method to time varying volume data us-
ing a wavelet time-space partitioning tree. While wavelets can pro-
vide for efficient storage of large multiresolution volumes, they do
have a disadvantage in that to access a given level of detail of a
volume multiple levels of the wavelet hierarchy must be accessed.

An alternative to directly storing a multiresolution volume is to
generate metadata that can be used to skip large portions of the high

resolution volume that are not needed. For example, Gregorski, et
al. [7] developed a method for preprocessing tetrahedral volumes
such that diamonds of min-max values are identified. This enables
fast reconstruction of isosurfaces subject to a user-specified error
tolerance without having to visit the entire volume. However, this
approach does not directly apply to our problem because we are
performing general level of detail selection rather than computing
isosurfaces. Instead, we are using interval volumes to weight the
importance of different portions of a volume for the purposes of
error estimation in level of detail selection.

More similar to our technique are techniques that downsample
the volume into a multiresolution hierarchy, resulting in some data
duplication, but at the same time enabling flexible reconstruction
with minimal computational overhead and fewer reads. Gao, et
al. [6] developed a distributed architecture for volume rendering
of distributed data using multiresolution hierarchies while consid-
ering visibility to reduce data movement and applying prefetching
in a load on need context. LaMar, et al. [9] use a multiresolution
texture hierarchy to accelerate volume rendering on graphics hard-
ware.

Rendering a multiresolution hierarchy requires the selection of a
subset of blocks (level of detail) from the multiresolution hierarchy
that need to be rendered and/or loaded. Conceptually, this can be
thought of as the construction of a cut through the multiresolution
hierarchy. In our technique we explicitly generate multiresolution
cuts (or level of detail selections) through a 4D multiresolution vol-
ume. Boada, et al. [1] also directly generate cuts through a mul-
tiresolution hierarchy in the context of volume visualization. Gyu-
lassy, et al. [8] also directly generate cuts through a multiresolution
hierarchy but combine it with view-dependent error calculations.
However, there are substantial differences between these methods
and ours. First, their multiresolution volumes are 3D rather than
4D, which has implications for the complexity of the algorithms
and the severity of errors introduced by the use of interpolation
with lower levels of detail. Secondly, their cut construction algo-
rithms construct the cuts in a top-down manner from the lowest
level of detail. Construction of the cut from the lowest level of
detail may sometimes be less computationally expensive than our
optimization-based approach. However, especially in data sets with
wide ranges of levels of detail like those we tested, it poses the po-
tential of missing features at the higher levels of detail if the lowest
level of detail is sufficiently undersampled and other measures are
not taken.

Constructing the level of detail selection, regardless of whether
it is constructed in an optimization-oriented or bottom-up manner,
requires deciding when to decimate or refine the level of detail se-
lection. Two general optimization approaches that can be taken
are error-constrained and size-constrained. In the case of error-
constrained approaches the objective is to minimize the size of the
working set subject to the error constraint. In the case of size-
constrained approaches the optimization function may seek to max-
imize importance or minimize error subject to a working set size
constraint. Size-constrained approaches are more appropriate when
hardware limits on the maximum interactive working set size are
important in interaction.

Error-constrained approaches have been widely applied in visu-
alization. Wang, et al. [16] consider both spatial and temporal error
constraints in the rendering of wavelet data. Danskin, et al. [4] con-
sider image-space error constraints on rendering error in volume ray
tracing. Gregorski, et al. [7] consider error tolerances in the extrac-
tion of time-varying isosurfaces. These techniques contrast with
ours in that ours is size-constrained rather than error-constrained.
However, it is important to consider that even though our technique
is not error-constrained the error can still be quantified in the re-
sults.

Size-constrained (and by extension, load time-constrained) ap-

proaches have also been widely applied in visualization, as well
as general graphics applications. Saito [12] developed a time-
constrained point rendering approach for previewing volumes and
argues that constant frame rates are beneficial for interaction. Shin,
et al. [14] developed a quadtree-based approach for fixed frame
rate continuous LOD terrain visualization. Lindstrom, et al. [10]
applies a height field simplification algorithm to keep a constant
frame rate. Funkhouser, et al. [5] proposed an adaptive render-
ing algorithm that seeks to maintain a constant frame rate for vir-
tual environment visualization. Certain, et al. [3] applies wavelets
within a time-constrained context to maintain constant framerates
for multiresolution surface viewing. While all of these works are
from different contexts, they all consider consistency of frame rate
and working set size to be important enough for interaction to make
it a constraint on their level of detail choices.

The concept of importance (expressed via interval selection us-
ing the weighting function, in our technique) can help facilitate
higher quality by allowing some subsets of the data to have higher
priority over other subsets of the data. The concept of impor-
tance sampling has been widely used in visualization and render-
ing. Danksin, et al. [4] and Viola, et al. [15] both apply impor-
tance sampling in the context of volume rendering. Similarly to our
technique, Martin, et al. [11] considers user-specified isovalues in
computing a fixed distribution of work in the context of distributed-
data isosurface computation, though that work does not consider
multivariate data and does not pose the problem directly as an opti-
mization problem.

While level of detail selection has been widely used and ex-
plored, we are not aware of a proposal for error prediction similar
to the concept of histogram spectra, nor have we found a similar
greedy solution to the level of detail selection problem that can effi-
ciently utilize the histogram spectra for 4D, multivariate, multires-
olution volumes.

3 LEVEL OF DETAIL SELECTION

Assume that a time-varying volume is divided into a set of 4D sub-
volumes (or “bricks”.) Each subvolume is sampled into a set of lev-
els of detail, each with a different sampling frequency. The goal of
the level of detail selection algorithm is to select the level of detail
for each subvolume that maximizes quality subject to a working set
size constraint. The data flow of the level of detail selection process

in our technique is exhibited in fig. 1.
[Multiresolution

subvolumes]—>‘ Renderer ‘

v L)

Histogram spectra =
generator ‘ [LOD selection }

i
[hisligg;rzl:l?\;%lggﬁjm ‘ sl it ‘

Figure 1: The histogram spectra generator takes a multiresolution

bricked volume and generates a histogram spectrum for each sub-

volume (“brick”) of the volume. This will be done as a precompu-

tation step in the data preparation phase. The LOD selector then

uses that, with a set of user-defined parameters such as intervals of

interest, to produce a LOD selection set. The LOD selection can be
performed interactively.

3.1 Histogram Spectra

Let f,(x) be the probability density function (PDF) of a subvolume
sampled at sampling frequency a. The histogram spectrum of the
subvolume is then a mapping R? — R

h(x,a) = |fp(x) = fa(x)] (1

53
<

. — 0.0001

Sampling Frequency

0

=8
[T
=3

0 0.0035 0.0070 0.0105 0.0140
Value

Figure 2: This histogram spectrum of a single plane of a single
timestep of the QVAPOR variable of the climate test data set (de-
fined in §4) is typical of histogram spectra. Moving up on the ver-
tical axis corresponds to downsampling, and each column corre-
sponds to the potential change in the area of an isosurface as a
function of sampling frequency. Columns with brighter colors in
this plot correspond to values that are more sensitive to sampling.
Rows with brighter colors correspond to sampling frequencies with
greater overall, unweighted, error.

where b is the sampling frequency of the highest level of detail of
the subvolume and x is the value parameter to the PDF.

For a volume comprised of multiple subvolumes, the set of his-
togram spectra is comprised of the histogram spectrum of each sub-
volume. Each subvolume is processed independently of every other
subvolume.

Evaluating A(x,a) for a given x and a yields a value proportional
to the absolute difference between the surface area of an isosurface
with value x in the subvolume sampled with sampling frequency
a and the surface area of an isosurface with value x in the subvol-
ume sampled with frequency b. The relationship between isosur-
face area and histograms has been examined in depth by Scheideg-
ger, et al. [13] and Carr, et al. [2]. If no information has been lost
in value x by sampling with a frequency a versus sampling with a
frequency b then h(x,a) = 0.

3.2 Weighted Histogram Spectra

H .
high 0

0 0.0035 0.0070 0.0105 0.0140
Value

53
<

Sampling Frequency

Figure 3: The weighting function is used to control the width of
the interval volumes of interest in the context of the level of detail
selection. In this example a weighting function was chosen to place
importance on the interval of values from 0.0070 to 0.0105. The
weighting function is applied over the columns of the histogram
spectrum, facilitating the computation of histogram spectrum pre-
dicted error as in equation (4).

A weighting function, w(x), is defined as an R — R mapping
from the volume value domain to weights. Conceptually w(x)
should reflect the important interval volumes (intervals of interest)
for the current visualization task, having a higher value within the
interval volumes than outside the interval volumes.

The weighted histogram spectrum, defined for a subvolume as in
equation (1), is then:

hy(x,a) = w(x)h(x,a) 2)

Evaluating &, (x,a) for a given x and a yields a value propor-
tional to the weighting function w(x) and the difference in isosur-
face surface areas as in equation (1). This is significant because it

enables the estimation of the error in intervals of interest from the
histogram spectrum using equation 4.
Typically, when w(x) is defined directly by the user, it will be in

the form of:
! xeY
wx) = { 0 otherwise G

where Y is a user-defined set of important values. For example,
choosing ¥ = 0.3 would mean that error is only considered to be
important if it affects an isosurface with isovalue 0.3. However, it
is not required that w(x) be in this form and indeed for multivariate
data it can be useful for it to be in a different form, as can be seen
in §3.7.

3.3 Predicted Error Using Histogram Spectra

The error of a scalar subvolume at a given sampling frequency a
can be estimated using the histogram spectra via

+oo
E(a) =/_m Iy (x,a)dx 4)

Effectively this sums the difference in surface area for every iso-
surface in the subvolume, weighted by the user-specified weighting
function w(x).

The RMS error of a subvolume is proportional to E(a). A
linear relationship was observed, as in fig. 4, on our test cases
for 0.1» < a < b — when the sampling frequency is greater than
about one tenth the ground truth sampling frequency. In a 4D vol-
ume, one tenth the ground truth sampling frequency would equate
to roughly a 10,000x reduction in size. This is data-dependent,
but does demonstrate that histogram spectra can be used to pre-
dict RMS error resulting from a range of downsampling operations
on real-world data sets. Most importantly for the purposes of the
greedy algorithm discussed in §3.6, it means that a ratio between
two RMS errors is the same as the ratio between the corresponding
two histogram spectrum predicted errors.

0.0005 T T T T

hS

0.0004
0.0003

RMS Error
\

0.0002 e _

0.0001

0.02 0.04 0.06 0.08 0.1

Histogram Spectrum Predicted Error

Figure 4: The RMS error is proportional to the histogram spectrum
predicted error. This fig. exhibits a test case on the QVAPOR vari-
able of the climate data set (defined in §4), and is typical of what we
have observed on other data sets. The exact scaling factor to deter-
mine the RMS error depends on the units of the data in the field and
the norm of the weighting function. However, this does not need to
be computed because only the relative differences between errors
need to be used in the algorithm discussed in §3.6. Because the
RMS error is linearly proportional to the histogram spectrum pre-
dicted error, the ratio between two RMS errors is the same as the
ratio between their corresponding histogram spectrum predicted er-
Tors.

3.4 Discretization of Histogram Spectra

In practice, for multiresolution data, only a finite number of lev-
els of detail can be considered. Similarly, the resolution required
for discrete forms of the probability density functions used in the
histogram spectra is also limited.

In our implementation we store a uniformly sampled histogram
spectrum for each subvolume as a 2D array of floats. The histogram
resolution (the number of columns) determines the narrowest inter-
val volume that can be considered for level of detail selection. Too
few columns will reduce the effectiveness of the algorithm, while
too many will waste space. It should be chosen to reflect the mini-
mum width of intervals that the user is likely to be interested in for
level of detail selection. In future work we may consider alternative
sampling strategies for the histograms, if we can find an application
that requires them.

When there are M levels of detail, M frequencies (rows) are
stored for the histogram spectra. However, if the highest sampling
frequency of a level of detail is the same as the ground truth sam-
pling frequency, it is not necessary to store the rows of the his-
togram spectra corresponding to that level because they can be as-
sumed to be zero.

The resulting floating point data can be compressed losslessly
with floating point image compression techniques, but in our test
cases the space consumed by the histogram spectra was not found
to be large enough to warrant this.

3.5 Integer Programming Formulations for LOD Selec-
tion

The goal of the level of detail selection problem is to compute the

level of detail index L; for every subvolume i of N subvolumes such

that the error is minimized and the size of the subvolumes to be

loaded for the level of detail is below a threshold, Syax. This can be

structured as a nonlinear integer programming problem

N

argming, Z Ei(ar,) 5)
i=1

with the constraints

N
Y Si, <Smacl <Li<M:Li€Z ()

i=1

where gy is the sampling frequency for level of detail index k, S; ;
is the load size for LOD j of block i, and M is the number of levels
of detail. This optimization problem is nonlinear because the op-
timization arguments are used as arguments to the nonlinear E;(a)
function within the objective function.

An alternate, equivalent, binary, linear integer programming for-
mulation can be constructed by recognizing that there are a finite
number of levels of detail:

™=
M=

argming Ei(a;)H; ; 7

i

Il
~.
Il

with the constraints

N M

Z Z H; ;S i < Smax (8)
M
Y Hj=1L1<i<NiieZ)
j=1

It follows from equation (9) that the solution to the binary, lin-
ear integer programming problem is related to the nonlinear integer
programming problem by:

o 1 Li=j
Hij= { 0 otherwise (10)

This is linear because the only potentially nonlinear part of the
objective function, E;(a), is now dependent on a set of constants,

the possible level of detail sampling frequencies, rather than the
argument being optimized as in equation (5).

With equation (10) it can be seen that the constraint equations (8)
and (6) as well as the objective functions (5) and (7) are respectively
equivalent.

General linear programming packages such as the GNU Linear
Programming Kit (GLPK) can be applied to solve the binary integer
programming problem described in equation (7). However, general
binary integer programming is NP-hard. Binary integer program-
ming packages, such as that offered by GLPK, often integrate accel-
eration strategies to more efficiently solve special cases of general
binary integer programming problems. However, we found (as in
the results in §4.2) that these strategies were generally insufficient
for attaining reasonable running times for interactive level of detail
selection.

Instead, we propose a greedy algorithm for solving the nonlinear
integer programming problem described in equation (5) that yields
approximate solutions very close to the optimal solution, with con-
siderably lower computational complexity. We still present the bi-
nary integer programming form because it provides a way to easily
apply existing integer programming optimization packages such as
GLPK to the problem for performance testing, and it provides for
extensibility in future work.

3.6 Greedy Algorithm for Nonlinear Integer Program-
ming Formulation

Because the number of subvolumes multiplied by the number of
levels of detail, N, in a data set may be very large, a greedy approx-
imation to the integer programming problem is more practical. For
example, with 1 MiB subvolumes (which equates to roughly 23*
univariate 4D blocks with 4 bytes per variable) and 8 levels of de-
tail, a 1 TiB volume would have approximately 8 million unknowns
in equation (7) and 1 million in equation (5). Even if a nonlin-
ear but polynomial time direct solution was possible for the integer
programming problem, the performance would still be insufficient
for performing LOD selection during the interactive portion of the
workflow.

Our approach is to consider the set of potential levels of detail
for all subvolumes, then apply them to the subvolumes in order of
increasing error density until the size constraint is satisfied. We
propose a three step greedy algorithm for accomplishing this:

1. Estimate the result error for every LOD for every subvol-
ume, as described in §3.6.1. This requires &(N) time using
histogram spectra.

2. Compute the error density values and sort the potential
LOD assignments by them, as described in §3.6.2. This re-
quires O(NIgN) time.

3. Assign the best LOD to every block using the sorted list, as
described in §3.6.3. This requires &'(N) time.

3.6.1 Error estimation

Every possible level of detail selection for a subvolume has an as-
sociated estimate of the sampling error that would be present due to
the choice of the level of detail. Whenever the intervals are changed
via the weighting function, equation (3), the error estimate will need
to be recomputed. If RMS error is computed directly, instead of us-
ing the precomputed histogram spectra with equation (4), the entire
volume will need to be revisited to compute the error, which is im-
practical within an interactive workflow. However, if the histogram
spectra are used to estimate error using equation (4) then only the
histogram spectra need to be visited. The histogram spectra are
much smaller than the entire volume and have already been com-
puted during either the data preparation or data generation phases.

3.6.2 Sorting and the heuristic

A list is constructed containing an entry for every potential LOD
assignment, for every subvolume. Each entry has a heuristic value
(error density), an LOD index, and a subvolume index. The heuris-
tic value used for subvolume i with LOD j, A; ;, is defined as fol-

lows: Ela)
a;
Apj=— 11
=S Y
where a; is the sampling frequency of LOD j, and S; ; is the size
in bytes loaded for LOD j of subvolume i. E;j(a;) is equation (4)
evaluated for subvolume i or, alternatively, the directly computed
RMS error which was used for the performance tests in §4.2.
This list is then sorted in ascending order of the heuristic, A; ;.
This results in a list of potential LOD assignments sorted by as-
cending error density.

3.6.3 LOD assignment

Conceptually the goal is to choose levels of detail that minimize
error density, subject to a size constraint, Symax. The following al-
gorithm is applied to assign levels of detail using the sorted list:

Listing 1: LOD assignment algorithm

L :=(list produced by sorting)

B :=(LOD assignment for each subvolume)
N_subvols:=(number of subvolumes)

S_max :=(maximum working set size)

S_total :=N_subvols % getSubVolSizeForLOD (1)

for (i in 1..L.length) AND S_total>S_max
if B[L[1].block]<L[i].lod
S_total-=getSubVolSizeForLOD (B[L[1i].block])
B[L[i].block]:=L[i].lod
S_total+=getSubVolSizeForLOD (B[L[1i].block])

When the solution is feasible, we have found this algorithm pro-
duces results close to the optimal solution produced by directly ap-
plying general binary integer programming algorithms as can be
seen in fig. 5. When the Spax constraint is too low for a feasible so-
lution, it gracefully results in the lowest detail level being specified
for all blocks.

0.1 T T
= PP Greedy ——
2 0.08 e Direct 7
5 006 B
3
o
E 004 \\
2] \

%
S 002 RE
& Fies
S

0
100000 1e+06 1e+07 1e+08 1e+09 1le+10

Working set sample count

Figure 5: Directly solving the integer programming problem with a
general integer programming package is impractical due to the high
computational complexity involved in solving the NP-hard prob-
lem. Our greedy algorithm as described in §3.6 yields nearly iden-
tical results with & (NIgN) where N is linearly proportional to the
number of subvolumes.

3.7 Multivariate Considerations

Multiple variables with different units are commonly used simul-
taneously in visualizations. For example, in a weather simulation
we may be interested in volume rendering clouds in the context of
a water vapor field. In this case, this implies that we want high lev-
els of detail where lower levels of detail would introduce too much
error in either the water vapor field, or the cloud field. These vari-
ables that are used to guide the selection of levels of detail are called
guiding variables.

3.7.1 Optimization

Histogram spectra are generated for each guiding variable. Sepa-
rate weighting functions are applied for each variable to produce
weighted histogram spectra for each, enabling the estimation of er-
ror for each guiding variable independently using equation (4). Ef-
fectively the nonlinear integer programming problem in equations
(5) and (6) can be extended to include C variables:

C Ny
argming Y Y Exi(axr,,) (12)
k=1i=1
with the constraints
C N
Z ZSk.,i,ij < Smax (13)

k=1i=1
1<L,; <M;L;€Z

where ay ; is the sampling frequency for level of detail index j of
variable k, Sy ; ; is the load size of LOD j of block i of variable k,
Ny, is the number of subvolumes in variable k of the volume, M is
the number of levels of detail, and C is the number of variables. The
binary linear integer programming formulation in equations (7), (8),
and (9) can be similarly extended:

. C Ne M
argming Y Y Y Eyi(ay)Hy) a4

k=1i=1j=1

with the constraints

=

M
Y HiijSkij < Smax (15)
1j=1

C
)
k=1i

M
Y Hiij=1:1<i<N:i€Z1<k<Ck€Z
j=1

The optimization solutions presented in §3.6 apply identically to
this multivariate case as they do to the univariate case. The multi-
variate forms’ objective functions are defined as the sum of multiple
univariate objective functions. Similarly, the multivariate forms’
constraints are the logical conjunction of multiple univariate con-
straint sets. When C is 1 the multivariate optimization equations
reduce to the univariate optimization equations.

3.7.2 Conditional importance

Sometimes there are variables that are only important where the
guiding variables are within a particular interval. We refer to these
variables as following variables. For example, consider the case
where a user wants to see the vertical velocity of clouds in the
context of a volume rendering where the cloud density defines the
opacity and the cloud color is defined by the vertical velocity. In
this case the guiding variable is the cloud density and the vertical
velocity is the following variable.

From the standpoint of optimization the guiding variables and
following variables are treated identically. However, the weighting
functions for following variables should take into account condi-
tioning by the guiding variables. In many circumstances, such as
in the above cloud velocity example, the probability distribution of
the following variable within the interval of interest of the guiding
variable is different from the probability distribution of the follow-
ing variable over the entire volume. This has been observed in our
test data sets, as can be seen in fig. 7.

While it is not absolutely required, for following variables, the
weighting function should be chosen to assign increased weight
where the conditional probability density of the following variable
is high. This will reduce the relative importance, with respect to

(a) Ground truth

(b) Ground truth, zoom

(¢) Narrow intervals, zoom (d) Wide intervals, zoom

Figure 6: Several variables from the climate data set are rendered for a single timestep. The white, opaque parts are clouds defined by the
QCLOUD variable. The magenta regions are clouds with high vertical velocities, as determined by the W variable. The yellow exhibits water
vapor density as determined by the QVAPOR variable. The volume is a curvilinear volume, with the Z variable of its mesh determined by the
MESHZ variable. All of these variables have their levels of detail determined by the level of detail algorithm. Figures 6a and 6b are generated
from the ground truth resolution, while figures 6¢ and 6d have levels of detail selected for a 4GiB working set size constraint. Figure 6¢
was generated with narrow intervals of interest, while fig. 6d was generated with wide intervals of interest. Like in fig. 9, selecting narrow
intervals of interest yields results closer to the ground truth than selecting wide intervals of interest.

0.25 - T
= 10'<QCLOUD<l ———
Z 0.2 0<QCLOUD<1 &
5]
2 015
=
= 0.1
3
S 005
n-' —
0 / -
-1 0.5 0 0.5 1
W value (m/s)

Figure 7: In some cases, with multivariate fields, a user is inter-
ested in seeing a variable A where variable B is between By and B;.
This interval [By : B1] is expressed as a weighting function for the
histogram spectra of B. The choice of the best weighting function
for A depends on the statistical dependence between A and B. If A
is not independent of B then we can use the conditional probability
density function of A given the case that B lies within [By : By] as
a starting point for constructing a weighting function for A. In this
example it can be seen that the PDF of the vertical velocity(W) in
the climate data set is different for different intervals of the cloud
density(QCLOUD.)

level of detail selection, assigned to values that fall outside of guid-
ing variable interval volumes of interest. We have found that this
works effectively as can be seen in the climate data test case in the
results.

4 RESULTS

Fundamentally, the goal of our technique is to permit interactive
selection of levels of detail on data sets much larger than can be
fit in-core or loaded interactively. This enables users to interac-
tively select levels of detail that focus on the intervals of interest
within time-varying volumes, which offer increased quality for a
given sample size constraint. We performed experiments to look at
three aspects of this: running times, visual quality, and statistical
quality.

4.1 Test data sets

Two data sets were used for experiments, one being from a climate
simulation at Pacific Northwest National Laboratory and the other
being from a turbulent combustion simulation at Sandia National
Laboratory. Both were time-varying volume data sets.

4.1.1 Climate

The climate data set is a set of multivariate volume timestep snap-
shots from a long-term weather simulation of the region around
Indonesia in the context of climate change research. The 4D

multiresolution data set used for the purposes of the experiments
was 117GiB with 8 levels of detail, sampled on a time-varying
geopotentially-defined curvilinear mesh with 41 timesteps bro-
ken into 18,944 4D subvolumes. The data set contained vari-
ables for geopotentially-defined elevation(MESHZ), cloud den-
sity(QCLOUD), water vapor density(QVAPOR), and vertical ve-
locity(W).

The MESHZ variable was comprised of 1,184 4D subvolumes
with 8 levels of detail ranging from 5.8MiB per subvolume to 64
bytes per subvolume. The QCLOUD, QVAPOR, and W variables
were each comprised of 5,920 4D subvolumes with 8 levels of de-
tail ranging from 1.3MiB per subvolume to 64 bytes per subvol-
ume. The total size of the histogram spectra, discretized into 128
histogram bins and 7 frequencies per subvolume, for the entire data
set, was 67MiB, 0.056% of the size of the multiresolution volume.
Additional static 2D variables included for the purposes of produc-
ing renderings were the land elevation, vegetation fraction, and sur-
face normals.

4.1.2 Combustion

The combustion data set is a set of volume timestep snapshots from
a simulation of the injection of fuel into two countercurrent air
streams in which combustion occurs. A single variable, the mix-
ing fraction (referred to as MIXFRAC), was used for the purposes
of testing. The 4D multiresolution data set, defined on a regular
grid, was 69GiB with 8 levels of detail and 121 timesteps broken
into 17,010 subvolumes. Levels of detail ranged from 1.1MiB per
block to 64 bytes per block. The total size of the histogram spectra,
discretized into 128 histogram bins and 7 frequencies per subvol-
ume, for the entire data set was 60MiB, 0.085% of the size of the
multiresolution volume.

4.2 Running time comparisons

The two major bottlenecks to interactive LOD selection for varying
intervals of interest are the load time for error estimation, and the
computation time for solving the optimization problem to minimize
error for a given size constraint.

The test platform was a Linux PC with an Intel Core 2 6600 dual
core CPU, 4GiB of main memory, and a hard drive with the IBM
JFS filesystem capable of approximately 30MiB/s with 5-10ms la-
tency for data storage.

4.2.1 Error estimation

For the error estimation aspect, we compare using the histogram
spectra versus directly estimating the RMS error from the data.
Estimating the error with the histogram spectra predicted error
(HSPE) only requires loading the substantially smaller discretized

histogram spectrum for each subvolume. Estimating the error di-
rectly with RMS error (RMSE) requires loading the entire data set
every time the LOD changes.

In the following tests LOD selection was performed for a
size constraint and a target interval on the climate QVAPOR
and combustion MIXFRAC variables, in conjunction with our
greedy algorithm for the LOD selection. The size constraint
choice and target interval choice do not affect the timing results.

[Heuristic [Data set | LOD Selection Time |
RMSE/size | QVAPOR 1782.0s
HSPE/size QVAPOR 0.1s
RMSE/size | MIXFRAC | 3900.3s
HSPE/size MIXFRAC | 0.2s

Using HSPE to compute the error in the heuristic, A; j, clearly
outperforms using RMSE on both data sets. This is because using
HSPE only depends on the histogram spectra, which have already
been precomputed in the non-interactive portion of the workflow.
In contrast, RMSE requires reading the entire volume data set every
time the list described in §3.6.2 is constructed. Figure 8 shows the
typical relationship between the error performance of the HSPE and
RMSE error estimators.

0.1
= HSPE ——
Z 008 o RMSE .
5 006 D
5 X
S 004 &
g om X
E . "\Q\,\.—\

0
100000 1e+06 1e+07 1e+08 1e+09 1le+10

Working set sample count

Figure 8: This fig. shows the error for different working set size
constraints, using different error estimators in the LOD selection
algorithm. The E; function in the optimization problem as refer-
enced by equation (5) can be approximated using equation (4) in-
stead of directly computing the RMS error (RMSE). The prediction
of error using the histogram spectra predicted error (HSPE) yields
results close to the direct RMS error. By using equation (4) with
histogram spectra it is possible to avoid loading samples from the
source volume when performing LOD selection, substantially im-
proving performance.

4.2.2 Optimization

For the optimization aspect, we compare our greedy approximation
to a direct integer programming approach. While general binary
integer programming is an NP-hard problem, packages like GLPK
apply some techniques to improve performance. Further informa-
tion about the techniques GLPK applies can be found in the GLPK
source code.

For GLPK with the QVAPOR data set, binary linear integer pro-
gramming was performed with 47,360 variables. The greedy al-
gorithm required only 5,920 entries to be sorted because only one
is needed per block, rather than one per block per LOD. For the
MIXFRAC data set, binary linear integer programming was per-
formed with 136,080 variables, and the greedy algorithm required
only 17,010 entries to be sorted.

The running time for GLPK is sensitive to the target interval of
interest, while the running time for the greedy algorithm is unaf-
fected by the target interval of interest. This is because the tech-
niques GLPK can apply depend on the coefficients in the linear pro-
gramming problem, while the greedy approximation simply sorts
by the heuristic then assigns the levels of detail. In all cases the
GLPK performance was slower.

[Solver | Dataset [Solving time |

GLPK | QVAPOR 7625.6s
Greedy | QVAPOR 0.1s
GLPK | MIXFRAC | 142.1s
Greedy | MIXFRAC | 0.2s

The greedy algorithm substantially outperforms GLPK. The rea-
son why the greedy algorithm is much faster is because its compu-
tational complexity is &' (NIgN) as discussed in §3.6. This stands
in contrast to the general integer programming methods applied by
GLPK which, for nontrivial inputs, are much worse than polyno-
mial time and exponential in the worst case. The result of the greedy
algorithm was also found to consistently be very close to the to that
of GLPK, as can be seen in fig. 5.

4.2.3 Histogram Spectra Computation

Computation of the discrete histogram spectrum for a single sub-
volume requires the computation of a histogram for different sam-
pling frequencies for the subvolume. Each subvolume can be pro-
cessed independently, yielding an embarrassingly parallel stream-
ing algorithm that can be easily implemented on GPUs, multi-core,
and/or multi-node platforms. Because of this, the computation of
histogram spectra is likely to be read-bound, rather than compute-
bound, on most system configurations. However, placement within
the visualization workflow will determine the true cost of this oper-
ation.

If the histogram spectra computation is done in-situ, during the
data generation phase, no additional reads are required because the
histogram spectra can be computed as the data is written out to disk.
If the histogram spectra computation is done as a separate pass dur-
ing the data preparation phase then the volume needs to be streamed
in from disk storage once, in its entirety. It is likely that software
engineering considerations specific to each application will dictate
which approach is appropriate. In either case, the computation pro-
cess scales linearly with the number of data samples.

(a) Ground truth

(b) Narrow intervals (c) Wide intervals
Figure 9: Values of MIXFRAC from the combustion data set within
the range [0.45 : 0.55] are rendered for a single timestep, where
values less than 0.5 are blue and those greater than or equal to 0.5
are orange. Figure 9a is a crop of an image generated using the
ground truth resolution, while figures 9b and 9c have levels of detail
selected for a 250MiB working set size constraint. Figure 9b has a
weighting function that is 1 for values in the range [0.45 : 0.55] and
0 elsewhere. Figure 9c has a weighting function that is uniformly
1. The narrower interval of interest used for fig. 9b clearly yields
a result closer to the ground truth than the wide interval of interest
that was used for fig. 9c.

4.3 Visual and statistical comparisons

Both from a statistical and visual standpoint, choosing narrow,
salient intervals to focus on for error reduction yields improved
quality. The univariate case was tested using the combustion data
set, and the multivariate case was tested using the climate data
set. Narrow interval widths are the minimal interval widths needed
to cover the non-transparent portions of the color-opacity transfer
functions used for producing the figures, while wide interval widths
cover the entire value domain.

0.078
0.076 S
0.074 e
0.072

0.07
0.068 >

0.066 L=
01 02 03 04 05 06 07 08 09

Interval Width

RMS error

Figure 10: For a fixed working set size constraint, increasing the
width of the range of values defining the interval volumes of in-
terest results in increased error. This figure, which was generated
using the QVAPOR variable of the climate test data set defined in
84, is typical of what we have observed. This is to be expected
because a larger interval volume will encompass more samples yet
the information density is likely to remain similar. Thus, the nar-
rower the interval volume of interest, the fewer samples are needed
to reconstruct the volume with a given level of error.

4.3.1 Combustion

Level of detail selection operations were performed for different in-
terval widths and centers on the MIXFRAC variable of the combus-
tion data set. Figure 10 exhibits the typical dependence observed of
the RMS error on the width of the interval volume of interest as
defined by a user via the weighting function. For a fixed working
set size constraint, increasing the width tends to result in increased
error. This is reasonable, because a larger interval volume will en-
compass more samples yet the information density is likely to re-
main similar.

The implications of this increased error can be observed in fig. 9.
Artifacts are typical of block-wise downsampling, with a smooth-
ing effect on the data and discontinuities at block (or subvolume)
boundaries. Animations of the time series exhibit the improve-
ment of the narrow interval over the wide interval more dramati-
cally than the images. Choosing narrower intervals clearly yields
images closer to the ground truth.

4.3.2 Climate

Similarly to the combustion data set, level of detail selection op-
erations were performed for different interval widths. However,
multiple variables were considered simultaneously. The QCLOUD,
QVAPOR, and MESHZ were guiding variables while the W was a
following variable, as described in §3.7. Using the guidelines in
3.7.2, the weighting function for the following variable, W, was
conditioned by QCLOUD using the conditional PDF in fig. 7.
Figure 6 exhibits the results. Like the combustion data set in fig.
9, the quality was higher for narrower intervals. The figures pro-
ducing using narrower intervals of interest are more similar to the
ground truth than those produced using wider intervals of interest.

5 CONCLUSION

We have introduced the concept of histogram spectra as a new ap-
proach for efficiently estimating error due to downsampling for in-
terval volumes of time-varying, multivariate, multiresolution vol-
umes. A new optimization approach for level of detail selection
was then introduced taking advantage of the linear relationship be-
tween the histogram spectra predicted error and RMS error. Both
the optimization approach and the histogram spectra are easy to
implement in software, increasing the practical applicability of our
approach.

These contributions enable interactive level of detail selection on
large, multivariate, multiresolution volumes for user-specified inter-
vals of interest. By enabling the interactive selection of intervals of

interest for the purposes of level of detail selection, increased visual
and statistical quality can be obtained.

REFERENCES

[1] I Boada, I. Navazo, and R. Scopigno. Multiresolution volume visual-
ization with a texture-based octree. The Visual Computer, 17(3):185—
197,2001.

[2] H. Carr, D. Brian, and D. Brian. On histograms and isosurface statis-
tics. IEEE Transactions on Visualization and Computer Graphics,
12:1259-1266, September 2006.

[3] A. Certain, J. Popovic, T. DeRose, T. Duchamp, D. Salesin, and
W. Stuetzle. Interactive multiresolution surface viewing. In SIG-
GRAPH ’96: Proceedings of the 23rd annual conference on Com-
puter graphics and interactive techniques, pages 91-98, New York,
NY, USA, 1996. ACM.

[4] J.Danskin and P. Hanrahan. Fast algorithms for volume ray tracing. In
VVS ’92: Proceedings of the 1992 workshop on Volume visualization,
pages 91-98, New York, NY, USA, 1992. ACM.

[5] T. A. Funkhouser and C. H. Séquin. Adaptive display algorithm for
interactive frame rates during visualization of complex virtual envi-
ronments. In SIGGRAPH ’93: Proceedings of the 20th annual con-
ference on Computer graphics and interactive techniques, pages 247—
254, New York, NY, USA, 1993. ACM.

[6] J. Gao. Distributed data management for large volume visualization.
In in Proc. IEEE Visualization, pages 183—189. IEEE Computer Soci-
ety Press, 2005.

[7]1 B. Gregorski, J. Senecal, M. A. Duchaineau, and K. I. Joy. Adaptive
extraction of time-varying isosurfaces. IEEE Transactions on Visual-
ization and Computer Graphics, 10(6):683-694, 2004.

[8] A. Gyulassy, L. Linsen, and B. Hamann. Time- and space-efficient
error calculation for multiresolution direct volume rendering, 2005.

[9] E. LaMar, B. Hamann, and K. I. Joy. Multiresolution techniques
for interactive texture-based volume visualization. In VIS '99: Pro-
ceedings of the conference on Visualization *99, pages 355-361, Los
Alamitos, CA, USA, 1999. IEEE Computer Society Press.

[10] P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N. Faust, and
G. A. Turner. Real-time, continuous level of detail rendering of height
fields. In SIGGRAPH ’96: Proceedings of the 23rd annual confer-
ence on Computer graphics and interactive techniques, pages 109—
118, New York, NY, USA, 1996. ACM.

[11] S. Martin, H.-W. Shen, and P. McCormick. Load-balanced isosurfac-
ing on multi-gpu clusters. In EGPGV ’10: Proceedings of Eurograph-
ics Symposium on Parallel Graphics and Visualization 2010, pages
91-100, May 2010.

[12] T. Saito. Real-time previewing for volume visualization. In VVS '94:
Proceedings of the 1994 symposium on Volume visualization, pages
99-106, New York, NY, USA, 1994. ACM.

[13] C.E. Scheidegger, J. M. Schreiner, B. Duffy, H. Carr, and C. T. Silva.
Revisiting histograms and isosurface statistics. IEEE Transactions
on Visualization and Computer Graphics, 14:1659-1666, November
2008.

[14] B.-S. Shin and E.-K. Choi. An efficient clod method for large-scale
terrain visualization. In ICEC, pages 592-597, 2004.

[15] I. Viola, A. Kanitsar, and M. E. Groller. Importance-driven volume
rendering. In VIS '04: Proceedings of the conference on Visualization
'04, pages 139-146, Washington, DC, USA, 2004. IEEE Computer
Society.

[16] C. Wang, J. Gao, L. Li, and H.-W. Shen. A multiresolution volume
rendering framework for large-scale time-varying data visualization.
In Volume Graphics, pages 11-19, 2005.

[17] C. Wang, J. Gao, and H.-W. Shen. Parallel multiresolution volume
rendering of large data sets with error-guided load balancing. In
EGPGYV, pages 23-30, 2004.

[18] R. Westermann. A multiresolution framework for volume rendering.
In VVS '94: Proceedings of the 1994 symposium on Volume visualiza-
tion, pages 51-58, New York, NY, USA, 1994. ACM.

