
Transformations for Volumetric Range Distribution Queries

Steven Martin∗

The Ohio State University

Han-Wei Shen†

The Ohio State University

ABSTRACT

Volumetric datasets continue to grow in size, and there is continued
demand for interactive analysis on these datasets. Because storage
device throughputs are not increasing as quickly, interactive anal-
ysis workflows are becoming working set-constrained. In an ideal
workflow, the working set complexity of the interactive analysis
portion of the workflow should depend primarily on the size of the
analysis result being produced, rather than on the size of the data
being analyzed. Past works in online analytical processing and vi-
sualization have addressed this problem within application-specific
contexts, but have not generalized their solutions to a wider variety
of visualization applications. We propose a general framework for
reducing the working set complexity of the interactive portion of vi-
sualization workflows that can be built on top of distribution range
queries, as well as a technique within this framework able to support
multiple visualization applications. Transformations are applied in
the preprocessing phase of the workflow to enable fast, approxi-
mate volumetric distribution range queries with low working set
complexity. Interactive application algorithms are then adapted to
make use of these distribution range queries, enabling efficient in-
teractive workflows on large-scale data. We show that the proposed
technique enables these applications to be scaled primarily in terms
of the application result dataset size, rather than the input data size,
enabling increased interactivity and scalability.

Keywords: Histograms, Range queries, Metadata generation, Vol-
ume synopsis

Index Terms: Computer Graphics [I.3.6]: Graphics data struc-
tures and data types—Volume range queries, metadata generation,
histogram range queries

1 INTRODUCTION

Volumetric datasets continue to grow in size, and there is continued
demand for interactive analysis on these datasets. Storage capac-
ities and compute capabilities have also increased in workstation
environments, but the storage throughputs and core memory sizes
available have not increased at a similar rate. This means that an in-
creasing number of analysis applications are becoming limited by
the size of the data required by the algorithm, rather than by the
computation speed or out-of-core storage device capacities avail-
able.

Many analysis applications perform data reduction – reducing a
subset of data from a large-scale dataset to a much smaller dataset.
For example, in volume rendering, a 3D volume is reduced to a 2D
image, where the size of the image is typically considerably smaller
than the size of the volume. An ideally scalable algorithm, for large-
scale data, would have an asymptotic working set complexity in
terms of the image size, rather than in terms of the volume size.

The working set of an algorithm is the set of data elements re-
quired for its execution during a time interval [7]. Assuming that
all of the data (with N elements) has a contribution to the solution

∗e-mail:martinst@cse.ohio-state.edu
†e-mail:hwshen@cse.ohio-state.edu

of an analysis application, it is unrealistic to expect that, in general,
we can change the asymptotic working set complexity, for the en-
tire time span of workflow, to be less than O(N). However, it may
be possible to change the working set complexity of the interactive
analysis portion of the workflow by applying data transformations
in the preprocessing phase. This can facilitate scalable interactiv-
ity by making the working set complexity of the interactive portion
primarily depend on the result size, rather than the size of the input
data.

One approach to tackling this challenge is to perform a prepro-
cessing pass that reduces the complexity for traditional analysis
methods applied in the interactive phase. This is the single-ended
transformation approach. For example, a volume could be down-
sampled to contain only as many samples as contained by the im-
ages being rendered. It could then be directly rendered using tradi-
tional volume rendering algorithms. The advantage to this approach
is that the interactive portion of the workflow will not require any
changes to have reduced working set complexity. However, the ma-
jor downside is the amount of sampling error that will be introduced
for most volumes.

Another approach is to introduce specialized analysis algorithms
for the interactive phase of the workflow, in addition to a prepro-
cessing phase. This is the dual-ended transformation approach. In
keeping with the volume rendering example, one example of this
approach is Fourier Volume Rendering (FVR) [21]. Using FVR, the
working set complexity of the direct volume rendering algorithm is
reduced1 from O(N3) to O(N2) during the interactive phase, with

an O(N3) preprocessing pass. In this example, several points can
be illustrated.

Firstly, the overall computational complexity is greater than the
working set complexity in this case (O(N3logN3) vs. O(N3)). But,
for the interactive portion of the workflow, the working set com-
plexity and computational complexity both decrease from O(N3) to

O(N2) and O(N3) to O(N2logN2), respectively. Secondly, some
flexibility in volume rendering has been sacrificed for the sake of
interactivity, but this may be acceptable for many users. Thirdly,
the overall working set complexity remains the same, as can be ex-
pected, but the working set complexity of the interactive portion of
the workflow has decreased considerably. Finally, this data trans-
formation facilitates only a fairly limited set of data analysis ap-
proaches. In summary, some flexibility and preprocessing time has
been sacrificed for increased interactivity by adapting the applica-
tion algorithm as well as introducing preprocessing. This exempli-
fies the approach we take.

An increasing number of analysis applications are considering
histograms, or other summary statistics, as their input, rather than
just the input volume. For example, instead of computing isosur-
faces for every cell in the volume, a lower resolution volume char-
acterizing the density of isosurfaces (”fuzzy isosurfaces”) can be
computed using histograms [29]. Another example is Histogram
Spectra, where the differences between histograms are used to char-
acterize error in level of detail selections [22].

These applications depend on distribution range queries. A dis-
tribution range query evaluates an estimate of the probability den-
sity function (PDF) of the values contained within a rectangular
cuboid region of a volume. We propose an approach that enables ef-

1for an NxNxN volume to be rendered into an NxN image

ficient evaluation of distribution range queries on multivariate vol-
ume data. This is accomplished by generating metadata during the
preprocessing phase, then loading it on-demand for queries in the
interactive phase. For multiple applications this enables the work-
ing set complexity to be primarily a function of the analysis result
size, rather than the size of the input data.

This core contribution has three parts. The first, discussed in
§3.2, is a generalization of integral histograms to the continuous
domain and to multivariate volumes, integral distributions. The
second, discussed in §3.4, is a decomposition of these integral dis-
tributions into a hierarchical structure, span distributions, that fa-
cilitates effective storage as metadata. The third is a proposal, in
§4, for how to apply the technique for improved working set com-
plexity in a few different applicatios with accompanying analyses.

Algorithms are provided both for the construction of metadata in
the preprocessing phase, and for the servicing of queries using this
metadata in the interactive analysis phase. To show the generality
of the benefits of the approach, a working set complexity analysis is
provided for two applications using this metadata. We believe that
this work provides a good foundation on which to build scalable
analysis applications.

2 RELATED WORK

Range queries have been widely explored in the field of Online An-
alytical Processing (OLAP) and are beginning to be explored in
more detail in the field of Visualization. This section will overview
some of the higher level techniques that have been applied in OLAP
to answer range queries in general, as well as techniques that fo-
cus more on computing distributions of ranges. Additionally, tech-
niques in visualization and graphics that facilitate of distribution
range queries will also be discussed.

In OLAP, it is typical for range queries to be for simple results
such as a summation or maximum. However, these can be viewed
merely as specific types of aggregation operators. Similarly, distri-
bution range queries are also a type of aggregation operator. Thus,
while most of these techniques seek to solve range sum queries,
some of them can be adapted to distribution range queries. One
group of techniques [10] [33] applies wavelet decomposition to the
space to approximate sums. Hou et al. [13] proposes cosine trans-
forms as an alternative. These techniques work well for scalar data.
The authors also introduce the concept of approximate reconstruc-
tions that sacrifice spatial accuracy.

Another group of techniques [8] [11] generate histograms to ap-
proximate scalar data for the purposes of range queries. These
techniques greatly depend on the bounds they choose for the re-
gions they approximate with histograms. Koudas et al. [18], Kar-
ras [15], and Poosala et al. [26] focus more on the aspect of the
problem involving the choice of bounding volumes. While these
techniques can be motivating applications for the use of histogram
range queries, as discussed in §4.1, they would be difficult to di-
rectly apply to answering distribution queries and may consume a
considerable amount of space. Hixels [29] are a simple case, where
the volume is broken into blocks over which histograms are com-
puted. This has a disadvantage in that it must have a high resolu-
tion (and consequently a large working set) to support range queries
with varying spatial positions and scales.

Prefix sum-based techniques in OLAP [9] [2] motivate the ap-
proach we have taken to answering distribution range queries. Fun-
damentally, these techniques compute a prefix sum then perform a
series of additions and subtractions between prefix sum values to
compute a range sum. Summed-area tables, in computer graph-
ics, apply the same basic concept to texture mapping [6]. Integral
histograms [27] extend this summed area table approach to support-
ing histogram range queries in the context of images. Much of the
work in OLAP in this area focuses on facilitating fast updating of
the prefix sum data, rather than just fast queries, which introduces a

Figure 1: The preprocessing phase transforms the volume data into
metadata using the transformation pipeline in equation (2). This re-
quires O(N) working set complexity, for a volume with N elements.
In the interactive phase, queries for distribution range queries are
evaluated by reading parts of the metadata on demand into the trans-
formation pipeline in equation (3). The working set complexity for
this phase depends primarily on the result query size rather than the
size of the input volume.

design compromise that we do not necessarily need to make in the
visualization context. However, those same works [4] [9] [19] do
introduce concepts that support subdivision of a volume into sub-
domains for the purposes of improving space and time complexity,
as well as increasing parallelism.

Integral distributions generalize existing techniques to multivari-
ate volumes to support reductions in working set complexity for
the interactive portion of multiple applications. Span distributions
leverage spatial coherence in integral distributions to further reduce
working set sizes, as well as supporting hierarchical, multiresolu-
tion approximate queries. The next section explains the details of
both of these techniques.

3 TECHNIQUE

The goal of the technique is to facilitate working set-efficient distri-

bution range queries of volumetric data. Q(~s0,~s1,~t) : R2d+m → R

is the probability density for the vector value t within the region of

the vector field V : Rd → R
m, with m-component vectors, bounded

by the points ~s0 and ~s1:

Q(~s0,~s1,~t) =

∫ ~s1

~s0
h(V (~s),~t)d~s
∫ ~s1

~s0
1d~s

h(~u,~t) =

{

0 : u 6= t
1 : u = t

(1)

where the integrals are volume integrals and d is the dimensionality
of the volume. In the context of scientific volume data, the vector
field V typically contains the contents of the m dependent variables.

Direct evaluation of equation (1) for a discretized volume re-
quires a working set of size O(N), where N is the number of sample
points within the bounding box of interest. For interactive queries
on large-scale data this is impractical. Our technique reduces this
working set for each query by transforming V into span distribu-
tions, which are a hierarchical repesentation of integral distribu-
tions, in the preprocessing phase. This enables efficient evaluation

of an integral distribution field W (~s) : Rd+m → R. Then, W is
used, instead of V , in an alternative formulation of equation (1), to
evaluate Q. Because evaluating Q using W instead of V requires far
fewer values, the working set complexity is reduced. The high level
process is shown in figure 1.

The integral distribution field is a mapping from R
d+1 to R,

rather than being defined in terms of a discrete domain. Addi-
tionally, the above equations are formulated in terms of general
probability density functions rather than probability mass functions
(which can be represented by histograms). Discretization and stor-
age strategies must be considered for both.

3.1 High level overview

The two phases of the proposed framework, the preprocessing
phase and the interactive phase, are shown in figure 1. Metadata
is generated in the preprocessing phase using a series of transfor-
mations:

V (~s)
I
−→W (~s,~t)

D
−→ Xi(~s)

S
−→ Yk,i (2)

where D is a distribution value discretization function, introduced
in §3.3.1. S is a spatial discretization function, such as span dis-
tributions, introduced in §3.3.2. X is a value-discrete, spatially-
continuous representation of W and Y is a value-discrete, spatially-
discrete representation of X . The integral distribution function, W ,
is introduced in section 3.2.

This metadata is loaded on-demand to evaluate queries. A se-
quence of transformations are applied for each query:

Ẏk,i
S−1

−−→ Ẋi(~s)
D−1

−−→ Ẇ (~s,~t)−→ Q̇(~s0,~s1,~t) (3)

where the dotted functions depend on only a subset of the metadata,
rather than the original Q function in equation (1). The inverse dis-
cretization functions needed for evaluating queries are introduced
in sections 3.3.1 and 3.3.2.

3.2 Integral Distribution Function

The integral distribution function maps a point in a multivariate vol-
ume to the distribution of the volume between that point and the ori-
gin of the vector field. This is an extension of integral histograms
[27], which themselves are an extension of the use of 2D prefix
sums in graphics (summed area tables [6]) and multidimensional
prefix sums in OLAP [9] [2].

The integral distribution function I is defined as:

I(~s,~t) = Q(0,~s,~t) (4)

where Q is from equation (1). This can be used to transform a vector

field V : Rd+m → R into an integral distribution field, W :

W (~s,~t) = I(~s,~t)

(∀t ∈ R
m)∧ (∀s ∈U)

(5)

where U is the set of positions in the domain of V , the input volume.
This is the intermediate representation that our metadata seeks to

represent, though without directly storing it. For the sake of clarity,
let Ẇ be equivalent to W , but computed using the metadata, rather
than by directly evaluating equation (5). In other words, any evalu-
ation of W produces the same value as Ẇ , but Ẇ depends only on
the metadata, while W depends on evaluating Q.

With the integral distribution field, an alternative to equation (1)
can be constructed to produce Q. For a one dimensional volume,
where the domain of V is R, this is simply:

Q̇(s0,s1,~t) = Ẇ (s1,~t)−Ẇ (s0,~t) (6)

Because Ẇ is known a priori from the metadata, Q can effectively
be evaluated simply by using two lookups into Ẇ , rather than by
evaluating an integral over V . This can trivially be extended to the
2D case, where the domain of V is R2:

Q̇(~s00, ~s11,~t) = Ẇ (~s00,~t)+Ẇ (~s11,~t)−Ẇ (~s10,~t)−Ẇ (~s01,~t) (7)

Generalizing to vector fields with R
d domains, this becomes:

Q̇(~s{0}d , ~s{1}d ,~t) = ∑
i∈{0,1}d

(−1)d−||i||1Ẇ (~si,~t) (8)

where {S }d raises the set {S } to the dth Cartesian power. For ex-

ample, {0,1}2 is {{0,0},{0,1},{1,0},{1,1}}. For an evaluation

of Q̇ in d spatial dimensions, 2d lookups into the W field are re-
quired. This formulation of Q̇ is similar to the formulation used for
integral histograms [27], but generalized to a continuous domain.

In this work we do not seek to store the integral distribution field
directly. Rather, we discretize it then decompose it into a more
appropriate format for large-scale data. This involves two related
parts: discretization of the field in terms of the spatial component(~s)
and a discretization of the field in terms of the value component(~t).
The next section addresses both aspects.

Figure 2: In this example, a 1D integral distribution volume (Xi(s))
is discretized into 8 span distributions (Yk,i) as described in equation
(9). The span distribution at index 6, for example, is computed by
subtracting Xi(5) from Xi(7).

3.3 Discretization

The integral distribution field is an R
d+m → R mapping with two

parameters: an R
d vector field spatial position parameter, and an

R
m vector field value parameter. Different discretization strategies

can be taken for these two different components. The former is
discussed in section 3.3.2 and the latter is discussed in section 3.3.1.

3.3.1 Distribution Discretization

The distribution discretization problem seeks to provide two func-
tions: a discretization function and a reconstruction function. The
discretization function, D, maps an input m-dimensional probabil-
ity density function (PDF) to a finite number of real numbered val-
ues. The reconstruction function, D−1, enables the reconstruction
of PDFs from the values produced by the discretization function.

For example, a simple discretization function could be a mean
combined with a variance. The associated reconstruction function
would then be a normal distribution. This is not appropriate for
many real cases, but it serves as a simple example.

In effect, the goal is to provide compact models of probability
density functions that are appropriate for the underlying distribu-
tions. Many approaches exist for solving this problem [3]. The fol-
lowing are a few approaches that are appropriate for use with span
histograms, and are of relatively low implementation complexity.

For cases where m is small (where there are few variables in
the multivariate volume), histograms can be an effective tool for
discretization. When m is greater than 1, this discretization takes
the form of joint histograms. Due to the curse of dimensionality,
joint histograms may not be effective in handling cases where m
is large [3]. Gaussian mixture models or polynomial fits may be
acceptable alternatives to histograms in cases where m is large.

In our end goal of evaluating queries in the form of Q in equa-
tion (1), the~t value may actually take multiple values for a single
query position. This is because most applications will be interested
in the PDF for more than one value. Thus, any discretization model
applied should consider this. Unless only very few values of~t are

needed, it will generally make more sense to provide the user ap-
plication the entire distribution model as the result of Q, rather than
a single value.

When histograms are used, choices must be made on what bin-
ning strategy may be used. When two histograms are to be added or
subtracted, the operation reduces to a simple vector addition or sub-
traction, when the bin bounds are the same for the operands. If they
do not line up, error will be introduced during the addition because
in the cases of partial bin overlap, it is not clear how to distribute
the values between overlapping bins. This implies that the same
histogram binning should be used for all histograms stored in the
metadata. However, it does not apply any restrictions on what the
specific binning strategy used should be, other than that it should be
suitable for the entire dataset. This is a well-explored problem [31]
[17], but there is still substantial room for future work in exploring
it in the context of large-scale data.

For the purposes of exploring the applications in this paper, a
histogram discretization is used and globally-uniform equal-width
binning is assumed. However, for the purposes of the definition of
span distributions, no assumptions are made about the discretization
other than that they can be added and subtracted.

3.3.2 Spatial Discretization

Similarly to the distribution discretization problem, the spatial dis-
cretization problem seeks to provide two functions: a discretization
function, and a reconstruction function. The discretization function,
S, maps the discretized distribution at every point in the input spa-
tial domain, as produced by the distribution discretization function
(D), to a finite number of real values. The reconstruction function,
S−1, maps the resulting values from the discretization function back
to the input domain.

For example, a simple discretization function would be near-
est neighbor sampling onto a uniform grid. The associated recon-
struction function for a spatial position would return the value at
the nearest sample. Combining this spatial discretization function
with a histogram distribution discretization function is the approach
taken by integral histograms [27].

Span distributions are an alternative spatial discretization func-
tion, designed to be more working set-efficient by supporting mul-
tiresolution approximate reconstruction of the W field and taking
advantage of spatial coherence between nearby regions.

3.4 Span Distributions

The volumes affecting each integral distribution tend to have con-
siderable overlap, as shown in figure 2. This implies that their re-
spective distributions will be similar. For example, consider the
case in a 3D volume where an integral distribution is defined for
the point < 1,1,1 >. If a neighboring integral distribution is de-
fined for the point < 1,1,1.01 >, 99% of the contributing volume
will overlap, placing an upper bound on the possible difference be-
tween the distributions.

Two key observations follow from this. First, a hierarchical spa-
tial discretization can be used effectively for facilitating approxi-
mate integral distribution reconstruction. Secondly, the information
entropy of the difference between neighboring integral distributions
will tend to be considerably smaller than the information entropy of
the individual integral distributions. Span distributions are designed
to take advantage of both of these observations.

Span distributions are a spatial discretization strategy, mapping
Xi(~s) to Yk,i, taking the place of S in equation (2). In the case of
d = 1, where V has only one spatial dimension, the span distribution
discretization function is defined as:

YG(s),i = Xi(s)−Xi(s−G−1

(BG(s))
)

Bk = 2Lk

Lk = (least significant nonzero bit index in k)

(9)

Figure 3: Distribution range queries are executed by evaluating the
integral distirbution of each corner of the range using equation (10),
then combining them using equation (8). In this example, the range
query is evaluated using 4 span distributions, subtracting the span
distributions (Y2,i and Y3,i) that contribute to the Xi(4) integral dis-
tribution, and adding the span distributions (Y4,i and Y6,i) that con-
tribute to the Xi(7) integral distribution.

Figure 4: The Z-order space-filling curve maps a d-dimensional
integer coordinate to a 1-dimensional integer coordinate. In this
example, a 3D coordinate with 4 bits per component is mapped to
a a single 1D coordinate with 12 bits.

where G(s) and G−1
k

are nearest neighbor mappings from R to Z

and Z to R respectively.
The inverse transform (S−1 in equation (3)) maps Yk,i to Xi(~s). In

the case of d = 1, where V has only one spatial dimension, the span
distribution reconstruction function is defined as:

Xi(s) =

{

YG(s),i +Xi(G
−1
BG(s)

) : G(s) 6= 0

0 : G(s) = 0
(10)

Intuitively, the forward transformation discretizes the spatial po-
sitions to a uniform grid, then stores a distribution for each nonzero
bit in the discretized grid coordinate index. This decomposes the
input integral distributions into one or more span distributions. The
inverse transform performs the reverse of this, fetching one span
distribution for each nonzero bit in the discretized grid coordinate
index. Figure 3 shows an example of this being used for range
queries.

Extending the above equations from one dimension to d dimen-

sions only requires a modification to the G(~s) and G−1
k

nearest
neighbor mappings. Specifically, the real-valued spatial positions
are mapped to integer positions, component wise, on a uniform grid.
Then, a single integer is produced from these coordinates’ integer
positions by using the Z-order space-filling curve [24]:

G(~s) =
⌊

Z(diag(~N)~s)+ 1
2

⌋

(11)

G−1
k

= diag
(

1
~N

)

Z−1(k) (12)

where Z is the Z-order space-filling curve and diag(~v) produces a
diagonal matrix from vector ~v. Figure 4 shows an example of a Z-
order curve encoding of a 3 dimensional integer vector. Use of Z-
order space filling curves for hierarchical representations has been
applied before [25], due to their favorable storage locality proper-
ties and simplicity. However, they have not been used in the context
of representing data structures similar in purpose or structure to in-
tegral distributions.

This section has provided a definition of span distributions, in
terms of the transformations (discretization and reconstruction) be-

tween Yk,i and Xi(~s). The next section discusses how Yk,i, the span
distributions, are stored.

3.5 Storage of Span Distributions

The Yk,i field, produced by the transformation discussed in the pre-
vious section and shown in equation (2), is the metadata that is to be
stored on disk, but it must be encoded first. Multiple considerations
must be made to facilitate efficient storage and use.

Because the goal is to leverage the hierarchical representation of
span distributions to facilitate approximate queries, it makes sense
to store the elements for each level contiguously, rather than inter-
leaving the elements from different levels. This is taken advantage
of in section 4.1. Additionally, because user applications are likely
to be interested in the PDF evaluated at ranges of values, rather than
a single value, values that contribute to the same PDF discretization
should be stored contiguously. Finally, working sets can be further
reduced by applying entropy coding.

To construct the hierarchical storage model, Yk,i is separated into
levels. The level to which a span distribution is assigned is Lk, from
equation (9), which is simply the index of the rightmost nonzero
bit in k. In the case of k = 0, the level index is log2 N where N is
the number of span distributions. For multidimensional indices, k
is the Z-order index of the grid coordinate, for a uniform grid su-
perimposed on the volume. The result of this is that the number
of span distributions in each level decreases as the level index in-
creases. Additionally, because the width of each span distribution
is a function of the level number (as can be seen in equation (9)),
the volume of the space contributing to a span distribution will tend
to increase as the level index increases.

Each level is stored as a set of chunks, with each chunk storing
a sequence of entropy coded span distributions. To further improve
entropy coding performance, each span distribution within a chunk
(other than the first span distribution) is stored differentially with
respect to the previous span distribution in the chunk. Each chunk
stores an entropy coding model and a set of entropy codes. Because
the information entropy of each span distribution can vary per-level,
the number of span distributions that are stored per chunk should
also vary per-level. This is necessary to maintain a favorable ratio
between entropy coding model sizes and entropy code array sizes.

In our experiments, we found that the size of levels, in terms of
total information entropy, varies exponentially with respect to the
level number. This can be seen in figure 5. Similarly, the number
of span distributions per level also varies exponentially. Thus, be-
cause the total information entropy of a level is equal to the number
of span distributions times the information entropy of each span
distribution, the information entropy of the span distributions can
also be modeled as an exponential.

If the level index is ℓ, then the total size for levels can be modeled
as:

Hℓ = α1eℓ+α0 (13)

Additionally, the number of span distributions in a level can be
modeled as:

Nℓ = 2log2 Nd−ℓ (14)

With this, the entropy per span distribution can then be modeled as:

Mℓ =
Hℓ

Nℓ
= β1eℓ+β0 (15)

Assuming that the size of the entropy model for a given chunk is
constant, and is F , and the ideal ratio between the entropy model
between the size of the model and the size of the code sequence is
γ , the ideal number of span distributions, L , for a given level ℓ is:

F γ

Mℓ
= L (16)

 10

 15

 20

 25

 30

 35

 40

 45

 0 2 4 6 8 10 12
 10000

 100000

 1e+06

 1e+07

 1e+08

B
y
te

s
P

er
 S

p
an

 D
is

tr
ib

u
ti

on

B
y
te

s
P

er
 L

ev
el

Level

Entropy/Span Dist.
Bytes/level

Figure 5: Both the size of the levels, and the number of span dis-
tributions in the levels, exponentially decreases as the level number
increases. The ratio between the size of the span distributions and
the number of span distributions enables modeling of the entropy
per span distribution.

The optimal value for γ depends on the latency to throughput
ratio of the storage devices being used. If latency is high, then γ
should be high. Similarly, if latency is low, then γ should be low.
At the extreme, if γ is too large, then the cost to perform a fetch of
a span distribution can be excessively large. In practice, for solid-
state drives with static Huffman coding, a γ value of around 30 was
found to be reasonable.

Because Lk determines the level number each successively lower
level number has higher spatial precision. If spatial precision can
be sacrificed, then span distributions do not necessarily need to be
loaded for all levels, nor do they need to be stored for all levels. In
other words, span distributions can be selectively loaded to facili-
tate approximate queries.

3.6 Approximate Queries with Span Distributions

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7
 0

 5000

 10000

 15000

 20000

 25000

 30000

R
el

at
iv

e
S
iz

e

M
ea

n
 E

rr
or

 B
ou

n
d
s

P
er

 B
in

Number of Dropped Levels

Size
Error

Figure 6: The relationship between the error bound and the stored
size for varying numbers of levels skipped

Approximate queries can be performed simply by not storing (or
not using) some of the lower numbered levels. This can be ac-
complished by modifying equation (10) to not include levels whose
index is less than a threshold. For example, in figure 2, dropping
the highest detail level would be equivalent to not storing the row
of span distributions for Lk = 0.

Each span distribution has a corresponding region of space from
which its distribution is drawn. This region is implied by equation
(9). The corresponding volume of a span distribution is the inter-
section of the two contributing integral distributions in the equation
(9) subtracted from the union of the same two contributing integral
distributions.

For one dimensional volumes of size N, the mean volume of
a corresponding region for a span distribution within a level ℓ is

N−12ℓ. For d-dimensional Nd volumes, this generalizes to:

2(1−d+ ℓ
d)(N +1)(d−1)N−d (17)

Intuitively, this means that as the level number is increased, the
mean volume increases exponentially. This implies that the the po-
tential error that can be introduced by dropping a low numbered
level will tend to be considerably lower than the potential error that
can be introduced by dropping a high numbered level.

In addition to this, as discussed in the previous section, the to-
tal size of span distributions on disk increases exponentially, as a
function of level number. Combining these two observations, we
can see that low levels of the span distribution data contribute the
least amount of potential error, yet cost the most amount of space
on disk. This enhances the effectiveness of a technique to reduce
query cost and metadata size by dropping low numbered levels.

3.7 Comparing Span Distributions

Span distributions provide a spatial discretization that enables ap-
proximate queries, and generalize support for distribution range
queries to arbitrary distributions, rather than just histograms.

 0.01

 0.1

 1

 10

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
P

er
 Q

u
er

y
 (

se
co

n
d
s)

Running Time (seconds)

Span Dist. 2016MiB (No dropped levels)
Span Dist. 2016MiB (3 dropped levels)
Span Dist. 2016MiB (6 dropped levels)

Direct, 2016MiB

Figure 7: Out-of-core data, query time, randomly positioned and
sized queries, 2016MiB source data

In supporting approximate queries, span distributions introduce
a hierarchical component to the metadata structure, as discussed in
the previous section. If the working set is considered for the time
interval of a single query (rather than the time interval for an en-
tire workflow), this will introduce an O(logN) factor for spatial
discretizations with N samples. However, if the number of levels
stored is held fixed, regardless of the data size, this reduces the
working set to O(1). In either case, the method is considerably
faster than O(N) methods. Figure 7 shows a typical result on a
dataset several times larger than the size of the core memory avail-
able.

The following table summarizes different aspects of some
alternative methods for evaluating distribution range queries:

Span distrib. Integ. hist.[27] Hixels [29]

Working set O(logN) , O(1) O(1) O(N)
Spatial
discretization

hierarchical uniform uniform

Distribution
discretization

general histograms histograms

Compression entropy coding raw raw

The working set in this table refers to the working set required
for a single query of random location and size in a volume, where N
is the number of discrete elements stored and the number of dimen-
sions is assumed to be constant. While the asymptotic complexity
of the working set for Integral Histograms [27] is less than that of
Span Distributions for a single query, the size of the stored metadata
is considerably larger. Figure 8 exhibits this difference in metadata
sizes. Larger metadata sizes will affect cache performance, which
can be observed in figure 9.

The above considers the working set only in terms of the time
intervals associated with individual queries. The next section dis-
cusses working sets in the context of the time intervals covering
entire application workflows.

4 WORKING SETS IN APPLICATIONS

In the context of visualization workflows, working sets are having
an increasing impact. Working set complexity for a time interval,
by definition, also places a lower bound on the compute time during

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 1e+06 1e+07 1e+08 1e+09 1e+10

O
u
tp

u
t

S
iz

e
(b

y
te

s)

Input Size (bytes)

No dropped levels
6 dropped levels

Uncompressed

Figure 8: Comparison of metadata sizes from applying lossless
compression with span distributions versus lossy compression with
span distributions versus no compression with integral histograms

that workflow. In fact, in many cases, when the working set is out-
of-core, the time due to storage operations will be much larger than
the time spent on computation.

We concentrate on the case where the size of the entire dataset is
considerably larger than the in-core memory limit of the system, but
the working set fits in-core. However, we assume that the working
set cannot be adequately predicted a priori. Thus, cache warming
cannot be used to pre-load the data outside of the interactive por-
tion of the workflow. In this situation, the application will tend to
be throughput-bound in the interactive portion of the workflow. Be-
cause of this, the working set of the over the entire time interval of
the interactive portion of the workflow can be used to identify the
performance characteristics of the workflow.

We take three steps in looking at performing working set analysis
for a given application. First, the application algorithm is charac-
terized. Next, the application query patterns are identified. Then,
knowing the query patterns, the working set is analyzed in the con-
text of the workflow.

The following sections apply these steps for a couple different
applications. The first application (§4.1) exemplifies a class of ap-
plications where distribution range queries can be used for error-
bounded data reduction. The second application (§4.2) exempli-
fies a class of applications where distribution range queries can be
used for interactive data summarization. The different classes have
working set characteristics.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
P

er
 Q

u
er

y
 (

se
co

n
d
s)

Running Time (seconds)

Span Dist. 64MiB (No dropped levels)
Span Dist. 64MiB (3 dropped levels)
Span Dist. 64MiB (6 dropped levels)

Direct 64MiB

Figure 9: Out-of-core data, query time transient response, randomly
positioned and sized queries, 64MiB source data

4.1 Application: Hövmoller diagrams

Hövmoller diagrams are used in meteorology to highlight wave
phenomena [14]. They are 2D plots where one axis typically shows
longitude or latitude and the other axis shows time. Each point in
the plot shows the aggregation, or sum, of the remaining axes. Ef-
fectively, these diagrams are sum aggregation queries, aggregating
sequences of samples along one axis into sums on a per element
basis in the other axes. Similar aggregation queries have also been
performed in higher dimensional visualization contexts [30]. We
propose a method using histograms to estimate these diagrams sub-
ject to interactively-chosen error constraints.

Sum aggregation queries of this form can be evaluated using
histograms. Suppose we pick a bounding box within the volume,
across which we want to evaluate sums down one axis. In 3D this
will produce a 2D image. To estimate the range of each of these
sums we can take the histogram of the bounding box region. If the
axis along which we want to sum values has n entries within the
bounding box, then the sum of the top n events in the histogram is
the upper bound of the sum for each entry on the other two axes.
Similarly, the sum of the bottom n events in the histogram is the
lower bound of the sum for each entry on the other axes. To com-
pute the complete image, quadtree subdivision can be performed
subject to a constraint on error.

The algorithm applied to produce this is effectively performing
a breadth-first search, within the quadtree of the 2D projection for
squares of the image space that can have their sums approximated
with a single distribution range query. Because the octree subdivi-
sion is in image space, the maximum number of distributions that
can be executed is O(M logM) where M is the number of image
space pixels. Note that the number of samples in the volume, N, is
not present.

Span distributions and integral histograms can both yield O(M)
performance in this case. This is substantially better than the
O(NM) performance that will result from the use of uniform hixels
or directly computing the histograms off the volume data. However,
there is a substantial difference between the actual access patterns
of span distributions and integral histograms. Because span distri-
butions are hierarchical, and this algorithm is a breadth-first search,
the accesses to span distributions will be concentrated into more lo-
calized regions of the metadata, potentially yielding improved uti-
lization of read-ahead. Figure 9 shows this behavior.

(a) Tolerance of ±10 (b) Tolerance of ±5

Figure 10: Approximate sum aggregation of 3D volumes for
Hövmoller diagrams as discussed in §4.1. The horizontal axis is
longitude and the vertical axis is time. The tolerance provides a
bound on how far the approximate sums may be from the true sums.
The dataset is from a simulation produced by the Pacific North-
west National Laboratory to examine the Madden-Julian Oscilla-
tion [12].

4.2 Application: Transfer function design

Performing transfer function design on time-varying data has long
been a challenge, with the dynamic range of values of interest being
unclear for the entire time series if they are not known a priori [32].
For static datasets, histograms have been used in the context of in-
teractive workflows to generate transfer functions [23] [28] [20] [5].
Using span distributions enables the use of interactively computed
transfer functions using regions covering the entire time domain.

Figure 11 exhibits an application where this is applied on the 4D
NCAR dataset 2, the result of a fluid dynamics simulation. In the
left pane of the application window an aggregation of the 4D vol-
ume onto a 2D plane, computed with the same method discussed
in §4.1, is applied. The user can drag and resize the query region
box in the left pane to select a 4D range of interest for the transfer
function. The cumulative distribution function of the histogram is

2this is the same dataset applied by Akiba et al. [1]

used as a lookup table to warp the color portion of the transfer func-
tion such that contrast is maximized for values that have a high fre-
quency of occurrence in the region of interest selected. The opacity
of the transfer function is determined by the values of the histogram
bins. Figure 11 shows different regions of interest selected for the
transfer function with the same timestep.

Queries in the left pane are performed, in real-time, on the entire
time series. The volume rendered in the right pane is for a single
time step. This enables the user to interactively select a transfer
function that is generated in a way consistent with the entire time
series, without needing to have the entire dataset resident in mem-
ory.

Additionally, with fast interactive queries, techniques that de-
pend on cursors for histogram determination can be supported on
large data. For example, Martin et al. [23] uses the interactive
manipulation of cursors on slice planes to incrementally construct
transfer functions, which requires fast distribution range queries.
For multidimensional transfer function construction, the technique
introduced by Kniss et al. [16] could be extended to use distribution
range queries of subvolumes, in addition to the entire volume.

In this application, the algorithm itself performs single range
queries for histograms in a 4D volume, then uses the histograms to
compute the transfer function. Every time the user moves the cur-
sor for a region of interest, a new query is performed. If L unique
queries are perormed, then using integral histograms will require a
working set of O(L). Span distributions, however, can take advan-
tage of other properties of this workflow.

Generally, the queries will have considerable overlap and be per-
formed over relatively large subvolumes of the input 4D volume.
Because of this, approximate span distributions can be used effec-
tively and the number of levels used can be chosen to be appropriate
for the granularity of the queries that the user wishes to perform.
This results in the span distribution method also requiring O(L),
but with a considerably smaller actual working set size due to the
approximate queries.

Figure 11: Interactive transfer function design for large-scale
time-varying volume data, using interactive 4D distribution range
queries, as discussed in §4.2. The user moves a region of interest in
the left pane on a projection of the volume. The distribution of the
region of interest is then used to generate transfer functions in the
right pane, using the same technique as Martin et al.[23]

5 FUTURE WORK AND CONCLUSION

Working set reduction, in the context of interactive workflows, will
continue to be of great interest for many applications in visual anal-
ysis. In this work we proposed a general framework within which
this problem can be approached. A transformation is performed
in the preprocessing phase to facilitate distribution range queries,
then the application is adapted to utilize approximation algorithms
that can make use of these range queries. The general pipeline is
broken into two transformations and their inverses: a distribution
discretization, and a spatial discretization. Both of these transfor-
mations are used to facilitate an effective representation of integral

distributions, a continuous multivariate generalization of integral
histograms.

Building on this framework, we focus on a spatial discretization
strategy: span distributions. Span distributions facilitate efficient,
potentially-approximate, distribution range queries through a hier-
archical decomposition of integral distributions. We show that this
approach can be used to construct scalable algorithms for analysis
applications – algorithms whose time complexity varies in terms of
the analysis result size, not the input data size.

Future work could include extending this approach to more ap-
plications. For example, the same range queries applied for transfer
function design and Hövmoller diagrams could also be used to en-
able new volume rendering algorithms whose working sets depend
primarily on the target image resolution rather than the volume size.
Other applications could include fuzzy isosurfaces, classification,
and feature detection. With the proposed framework, a single pass
of preprocessing can produce metadata that enables algorithms with
scalable working set characteristics. For a range of applications, the
working set complexity can be changed to depend primarily on the
result size, rather than the input data size.

ACKNOWLEDGMENTS

This work was supported in part by NSF grant IIS-1017635,
US Department of Energy DOE-SC0005036, Battelle Contract
No. 137365, and Department of Energy SciDAC grant DE-FC02-
06ER25779, program manager Lucy Nowell.

REFERENCES

[1] H. Akiba, K.-L. Ma, and J. Clyne. End-to-end data reduction and hard-

ware accelerated rendering techniques for visualizing time-varying

non-uniform grid volume data. International Workshop on Volume

Graphics, 0:31–225, 2005.

[2] F. Bengtsson and J. Chen. Space-efficient range-sum queries in olap.

In In Yahiko Kambayashi, Mukesh Mohania, and Wolfram W, editors,

Data Warehousing and Knowledge Discovery: 6th International Con-

ference DaWaK, volume 3181 of Lecture Notes in Computer Science,

pages 87–96. Springer, 2004.

[3] C. M. Bishop. Pattern Recognition and Machine Learning (Informa-

tion Science and Statistics). Springer-Verlag New York, Inc., Secau-

cus, NJ, USA, 2006.

[4] S.-J. Chun, C.-W. Chung, and S.-L. Lee. Space-efficient cubes for olap

range-sum queries. Decis. Support Syst., 37(1):83–102, Apr. 2004.

[5] C. D. Correa and K.-L. Ma. Visibility-driven transfer functions.

In Proceedings of the 2009 IEEE Pacific Visualization Symposium,

PACIFICVIS ’09, pages 177–184, Washington, DC, USA, 2009. IEEE

Computer Society.

[6] F. C. Crow. Summed-area tables for texture mapping. SIGGRAPH

Comput. Graph., 18(3):207–212, Jan. 1984.

[7] P. J. Denning and S. C. Schwartz. Properties of the working-set model.

Commun. ACM, 15(3):191–198, Mar. 1972.

[8] F. Furfaro, G. M. Mazzeo, D. Saccà, and C. Sirangelo.

Compressed hierarchical binary histograms for summarizing multi-

dimensional data. Knowl. Inf. Syst., 15(3):335–380, May 2008.

[9] S. Geffner, D. Agrawal, A. El Abbadi, and T. Smith. Relative prefix

sums: An efficient approach for querying dynamic olap data cubes.

Technical report, Santa Barbara, CA, USA, 1999.

[10] S. Guha. Space efficiency in synopsis construction algorithms. In

Proceedings of the 31st international conference on Very large data

bases, VLDB ’05, pages 409–420. VLDB Endowment, 2005.

[11] S. Guha, N. Koudas, and D. Srivastava. Fast algorithms for hierar-

chical range histogram construction. In Proceedings of the twenty-

first ACM SIGMOD-SIGACT-SIGART symposium on Principles of

database systems, PODS ’02, pages 180–187, New York, NY, USA,

2002. ACM.

[12] S. Hagos and L. R. Leung. Moist Thermodynamics of the Madden-

Julian Oscillation in a Cloud-Resolving Simulation. Journal of Cli-

mate, 24:5571–5583, Nov. 2011.

[13] W.-C. Hou, C. Luo, Z. Jiang, F. Yan, and Q. Zhu. Approximate range-

sum queries over data cubes using cosine transform. In Proceedings

of the 19th international conference on Database and Expert Systems

Applications, DEXA ’08, pages 376–389, Berlin, Heidelberg, 2008.

Springer-Verlag.

[14] E. Hovmöller. The trough-and-ridge diagram. Tellus, 1(2):62–66,

1949.

[15] P. Karras. Optimality and scalability in lattice histogram construction.

Proc. VLDB Endow., 2(1):670–681, Aug. 2009.

[16] J. Kniss, G. Kindlmann, and C. Hansen. Multidimensional transfer

functions for interactive volume rendering. Visualization and Com-

puter Graphics, IEEE Transactions on, 8(3):270 – 285, jul-sep 2002.

[17] K. H. Knuth. Optimal Data-Based Binning for Histograms. ArXiv

Physics e-prints, May 2006.

[18] N. Koudas, S. Muthukrishnan, and D. Srivastava. Optimal histograms

for hierarchical range queries (extended abstract). In Proceedings of

the nineteenth ACM SIGMOD-SIGACT-SIGART symposium on Prin-

ciples of database systems, PODS ’00, pages 196–204, New York, NY,

USA, 2000. ACM.

[19] W. Liang, H. Wang, and M. E. Orlowska. Range queries in dynamic

olap data cubes. Data Knowl. Eng., 34(1):21–38, July 2000.

[20] C. Lundstrom, P. Ljung, and A. Ynnerman. Local histograms for de-

sign of transfer functions in direct volume rendering. Visualization

and Computer Graphics, IEEE Transactions on, 12(6):1570 –1579,

nov.-dec. 2006.

[21] T. Malzbender. Fourier volume rendering. ACM Trans. Graph.,

12(3):233–250, July 1993.

[22] S. Martin and H.-W. Shen. Histogram spectra for multivariate time-

varying volume LOD selection. In Large Data Analysis and Visual-

ization (LDAV), 2011 IEEE Symposium on, pages 39 –46, Oct. 2011.

[23] S. Martin and H.-W. Shen. Interactive transfer function design on large

multiresolution volumes. In Large Data Analysis and Visualization

(LDAV), 2012 IEEE Symposium on, Oct. 2012.

[24] Morton. A computer oriented geodetic data base and a new technique

in file sequencing. Technical Report Ottawa, Ontario, Canada, 1966.

[25] V. Pascucci and R. Frank. Global static indexing for real-time ex-

ploration of very large regular grids. In Supercomputing, ACM/IEEE

2001 Conference, page 45, nov. 2001.

[26] V. Poosala and V. Ganti. Fast approximate answers to aggregate

queries on a data cube. In Proceedings of the 11th International Con-

ference on Scientific and Statistical Database Management, SSDBM

’99, pages 24–33, Washington, DC, USA, 1999. IEEE Computer So-

ciety.

[27] F. Porikli. Integral histogram: a fast way to extract histograms in

cartesian spaces. In Computer Vision and Pattern Recognition, 2005.

CVPR 2005. IEEE Computer Society Conference on, volume 1, pages

829 – 836 vol. 1, june 2005.

[28] T. Ropinski, J.-S. Praßni, F. Steinicke, and K. H. Hinrichs. Stroke-

based transfer function design. In IEEE/EG International Symposium

on Volume and Point-Based Graphics, pages 41–48. IEEE, 2008.

[29] D. Thompson, J. Levine, J. Bennett, P.-T. Bremer, A. Gyulassy, V. Pas-

cucci, and P. Pebay. Analysis of large-scale scalar data using hixels.

In Large Data Analysis and Visualization (LDAV), 2011 IEEE Sympo-

sium on, pages 23 –30, oct. 2011.

[30] J. J. van Wijk and R. van Liere. Hyperslice: visualization of scalar

functions of many variables. In Proceedings of the 4th conference on

Visualization ’93, VIS ’93, pages 119–125, Washington, DC, USA,

1993. IEEE Computer Society.

[31] M. P. Wand. Data-based choice of histogram bin width. The American

Statistician, 51:59–64, 1996.

[32] J. Woodring and H.-W. Shen. Semi-automatic time-series transfer

functions via temporal clustering and sequencing. Computer Graphics

Forum, 28(3):791–198, June 2009.

[33] Y.-L. Wu, D. Agrawal, and A. El Abbadi. Using wavelet decompo-

sition to support progressive and approximate range-sum queries over

data cubes. In Proceedings of the ninth international conference on

Information and knowledge management, CIKM ’00, pages 414–421,

New York, NY, USA, 2000. ACM.

